月旦 XIV

For April, 2017

AMS: Open Math Notes
总的来说,质量还不错。希望有三:有更多数学家参与,覆盖更广阔的领域,以及讨论更深入更前沿的课题。早就应该有属于共享时代的Annals of Mathematics Studies了!

Hadamard Lectures 2017, IHÉS:
Peter Scholze, On the local Langlands conjectures for reductive groups over p-adic fields
我还没来得及看。读者之中想必会有人对Scholze在想些什么感兴趣吧。

在介绍Weil猜想时(抱歉!等各种状态都更稳定一些,我一定会完成这个连载),我们顺带介绍了Grothendieck的标准猜想D及其在万有上同调理论中的核心地位。Voevodsky的一项重要工作是在代数闭链的4种经典等价关系之外,引入了第5种等价关系:Z_1粉碎-幂零等价 (smash-nilpotence equivalent)于Z_2,若对充分大的n(Z_1-Z_2)^{\otimes n}有理等价于0.
粉碎-幂零等价弱于代数等价,但强于同调等价。推广标准猜想D,我们有
(Voevodsky幂零猜想) 粉碎-幂零等价与数值等价重合。
arXiv上有一篇新文章:
Ornaghi, Pertusi Voevodsky’s conjecture for cubic fourfolds and Gushel-Mukai fourfolds via noncommutative K3 surfaces
这当然是一个很特殊的例子,没有太大的参考价值。然而对于不太了解这方面工作的人而言,却可以由此知道一些新进展:比如2014年提出的Bernardara-Marcolli-Tabuada猜想,等等。
进入新领域并不难:找到最新的文章(或者文献综述),按图索骥,念掉里面提到的最重要的几篇论文,就可以开始自己动手做点事情了。

依然是导出几何。Orlov有一个很自然的猜想:导出等价的光滑射影簇有同构的(\Bbb Q系数) Chow动机。在月旦 XII中,我们提到了Huybrechts新近的结果:K3曲面(事实上,任意代数曲面)满足Orlov猜想。通过Kimura–O’Sullivan的「有限维Chow动机」,这个猜想可以和我们介绍过的Bloch-Beilinson猜想联系起来,共同构成导出几何的一个非常美妙的子领域:植根于古典的同调论和相交理论,却又导向最深刻的代数几何结果。

The Race to Quantum Technologies and Quantum Computers (Useful Links)
顾名思义。
最令我感到好奇的还是量子科技的「远景」——比如,人脑是否是一台量子计算机?量子纠缠会是最终解开意识之谜的钥匙吗?Fischer假设已经在这个方向上迈出了第一步——并不那么坚定的一步——未来还有太多的工作等待着我们。
在构成新理论的所有原料中,想象力或许是最重要的。

「对周期与共振的唯象研究已有上千年的历史」,这件事我很早之前就知道。然而直到最近我才真正意识到,最广意义上的「周期与共振」几乎出现在现象世界的每一个角落。例如,同居女性的月经周期有逐渐趋于一致的现象,而其中又有不少例子,是趋于一致后又逐渐背离;「经济周期」并没有先验的存在理由,毋宁说是各个生产部门的生产周期在几十年上百年的尺度上逐渐趋于共振;天文学中有著名的「轨道共振」现象:卫星的周期趋于有理比例,但最终未必会达到「潮汐锁定」的状态;等等。
我们手头并没有一个完备的数学理论来判断共振的终态是否在各种意义下稳定:遍历理论、KAM理论只能给出部分的回答。
我们的无知是惊人的。光对人类的理智有信心还不够:我们必须确保一个允许知识积累的社会环境,才能把理性的每一次进步都确确实实地转化为共同知识的增量。即使不是历史循环论者(又一个周期!),也有理由担心像中世纪那样的「失落年代」再次降临——在漫天火光中,书是唯一值得抢救的东西。

一定的危机感是必要的。在某种意义上,科学家的工作就是为社会「忧天」。「气候变化很危险!」「AI很危险!」「Trump大砍研究经费,这种想法很危险!」这些呼声中透露出孩子般的真诚(你也可以说是「幼稚」)。这种孩子气本身——而非观点的正误——是“great society”不可或缺的一部分。向所有可能性保持开放,把这当成是对未来的投资,有勇气和科学家们一起承担“trial and error”的风险——对商人来说,这样理解会不会容易一点?
以上,是对“March for Science”的感想。

很凑巧:上个月的月旦提到了Timothy John Berners-Lee爵士对互联网未来的忧虑。几天后,ACM就宣布授予他2016年度的Turing奖,“for inventing the World Wide Web, the first web browser, and the fundamental protocols and algorithms allowing the Web to scale”.
人类偶尔也会对奉行理想主义的同类展露温情的一面。但历史总是更加残酷。我这么说,是因为TimBL的忧虑也是我的忧虑,而在我看来,任何个人都已无力阻挡这个令人忧虑的未来成为现实。
我知道这种悲观或许是不理性的,但理性告诉我,这种不理性也是「工作」的一部分。

月旦 XIII

For March, 2017

Dennis Gaitsgory, Hirzebruch-Riemann-Roch as a categorical trace
高阶范畴论(higher category theory)有一点玄学的味道,但不是这个理论本身的过错。在Grothendieck身后亦步亦趋的当代数学家往往忘记了这位大师一生发展的所有抽象理论都是为了解决具体的问题,在我看来,这是将数学与形而上学区分开来的最终判据,也只有在意识到这一点之后,才可能真正理解这些抽象理论的illuminating之处。
HRR定理当然是经典(甚至不妨说「老旧」)的内容了,但这并不妨碍我们用新鲜的眼光去重新看待它!

Office Hours with a Geometric Group Theorist,Edited by Matt Clay & Dan Margalit
一本即将出版的新书。题材对我来说还算有趣,本博客的忠实读者(我吃惊地发现这个集合好像还不小!)可能会记得我在月旦X中提到过一本联系几何群论和计算理论的书。
总的来说,几何群论是那种并不完全「正统」,因而可以给聪明人提供足够刺激的学科。我呢,虽然顽愚,却很愿意交聪明的朋友,并享受和他们共度的时光。

热力学第三定律是一条特别的定律:它当然不是先验的,却也很难说是经验的。它在整个理论体系中不占有什么重要地位,远远比不上第一、第二,甚至「第零」定律
最为人们所熟知的表述基于操作主义:不可能通过有限步操作将物体降温至绝对零度。Masanes & Oppenheim新近「证明」的也就是这个版本。
我倒觉得这件事的意义在别处。值得思考的一点是量子计算和操作主义有天然的亲缘性,或者说,我们还没有真正开始探索,更不要说理解物理操作过程的量子性。
不要指望科学哲学家提供什么帮助:他们对于经验世界的理解永远落后于物理学家。Kant的大厦构建在Newton的世界观之上,而不是相反。量子物理还没有迎来自己的Kant,也许永远不会有,但那也没什么。

Nature报道了正在四川稻城县海子山建设的高海拔宇宙线观测站 (LHAASO, Large High Altitude Air Shower Observatory)。
我不知道中美是否会进入「新冷战」。但两国在科技上竞争的趋势已经形成,或者说,通过资助大型科技项目来实现对美国的科技赶超,中国政府的这一企图已越来越明显。
历史告诉我们,科研人员的黄金年代正在到来,此时吟哦「国家不幸诗家幸」的人必定会显得不合时宜吧。

脑筋急转弯:NP in ZPP implies PH in ZPP.

Quantum Computing: Scott Aaronson on D-wave.

Peter Norvig, On Chomsky and the Two Cultures of Statistical Learning
读到这篇文章完全是在网上「冲浪」的偶然结果。我对语言处理毫无了解,感兴趣的是讨论「两种文化」的部分。在各类理论的构建中,”how?”和”why?”这两个问题最终会导致大相径庭的学术取向——这似乎是一种不断复现的现象。我还可以举出一些具体的例子,比如历史学、人类学之类。「但这里的空白太小了。」
在现代物理学的发展过程中,”how?”(Galilei-Newton传统)占据绝对的上风,「严格的功能主义」+「数学-统计方法」达成了无可匹敌的成就,成为其他学科竞相效法的模板,这些都是无可辩驳的事实。应用这套哲学,Norvig供职的Google也确实在语言处理、乃至更广阔的人工智能领域取得了惊人的成就。然而我也能同情Chomsky的立场,毕竟,对于人,我们总想知道,”why?”
我们最终能够知道吗?我们是否能像Hilbert那样勇敢地说出:”Wir müssen wissen, wir werden wissen”?

Bill & Melinda Gates Foundation宣布了自己的开放获取出版平台Gates Open Research.
这不是一件多么重要的事,却也从侧面折射出时代的风尚。我认为这种风气是好的。

Tim Berners-Lee: I invented the web. Here are three things we need to change to save it.
历史的讽刺在于左派总会被他们的理想背叛,或者说,理想的达成意味着左派的死亡,他们需要背叛来定义他们确实活着。
对于这些人(有「好人」,也有「坏人」,有Berners-Lee爵士那样的伟人,也有许许多多更加平凡的人),我惟有奉上我的敬意,还有同情。

月旦 XII

For January & February, 2017

Edge的年度问题:What scientific term or concept ought to be more widely known?
出色的回应很多,足够有心人看上好几天。我就不一一列举了。
我自己当然给不出什么正经回应。倒是在闲谈中戏仿过《论语》里的「孔鲤过庭」,博得朋友一笑:
曰:「学量子力学乎?」对曰:「未也。」「不学量子力学,无以知认识论。」退而学量子力学。曰:「学计算理论乎?」对曰:「未也。」「不学计算理论,无以知方法论。」退而学计算理论。闻斯二者。

Polymath 12关注的依旧是一个组合问题:Rota基猜想。和许多组合猜想一样,它的叙述非常、非常简单,只用到一点点线性代数。
通常我对组合问题的兴趣不大,不过也有例外。早在月旦 I中我们就曾提到,拟阵(matroid)这一概念虽然是组合的,却也容许一个代数几何诠释。近两年颇为热门的「组合(代数)几何」将复代数几何中的正定性定理、Lefschetz-Hodge理论等工具类比地应用于此类组合问题的研究,取得了不少成果。例如,组合几何版的强Lefschetz定理和Hodge-Riemann关系可以用来证明Rota的另一个关于拟阵的猜想:
Adiprasito, Huh, Katz  Hodge Theory for Combinatorial Geometries
我相信用类似的思路可以解决Rota基猜想。或者说只有这种解答才是「有趣」的。

Daniel Litt将我们的注意力引向Will Sawin的一篇文章,该文讨论了意大利代数几何学派遗留下来的一个经典问题:n点标记的、亏格g曲线的模空间的双有理几何。特征p的Severi猜想虽然被证否了,但我们还未得到一副足够完整的「全图」。

One-Sentence Theorem:导出等价的K3曲面的Chow动机同构。Cool!

形变量子化感兴趣的读者或许也会对这份讨论Poison几何的讲义感兴趣。

我和Y已有两年没有见面。今年春节重逢,照例讨论了许多数学问题,其中就包括Ramanujan-Petersson猜想和Selberg 1/4猜想。研究后者的进路之一是将其视为「算术流形的拓扑与几何」这个大纲领的一部分——这个纲领当然是非常迷人的!
受到Agol对拟Haken猜想的证明的鼓舞,算术拓扑学家开始考虑所谓的「拟凝聚上同调论」(virtual coherent cohomology)。这方面的研究还处于探索状态,但颇有可能在未来几年取得相当的进展。

我和Y合作的第一篇论文(美好的回忆!)用到了如下经典结果:虚二次域有类数1当且仅当其判别式d=-3,-4,-7,-8,-11,-19,-43,-67,-163
从「现代」的观点看,按类数分类虚二次域是一个「笨」纲领。Gauss时代的理想已经「落伍」了!然而,即使是出于对第一篇论文的怀念,我也很乐意看到这个纲领(在大型计算机的帮助下)得以实现。
一个较新的进度报告:我们已经得到了类数小于100的虚二次域全表
P.S. 碰巧的是,3月的Quanta Magazine刊载了一篇以Cohen-Lenstra heuristics(或者说「类数的统计学」)为主题的文章。 Bhargava是一个Gauss意义上的经典数论学家(不要忘记,同样是Gauss开创了「统计数论」),虽然在方法论上,他可能更接近Kronecker和他的“Jugendtraum”.

T. S. Eliot说”April is the cruelest month”,因为四月是属于”memory and desire”的季节。在那之前,”Winter kept us warm, covering / Earth in forgetful snow, feeding / A little life with dried tubers. ” 此刻,我们希望将悼念和敬意献给在这个冬天逝世的几位大师:

  • Kenneth Arrow (1921-2017):我们曾经讨论过著名的Arrow不可能定理。与其说这是一个经济学/社会学定理,倒不如这是一个「语言学」定理:我们所熟悉的「量化」并不足以囊括将经验世界数学化的一切努力。Arrow用这个关于序关系的定理开阔了我们的想象力。
  • Igor Shafarevich (И́горь Ростисла́вович Шафаре́вич, 1923-2017):苏俄时代的「三大佬」(Kolmogorov, I.M.Gelfand, Shafarevich) 终于都进入历史了。这三位的贡献既深且广,我不够资格来做总结。然而我会永远记得那些读Basic Notions of Algebra的夜晚!我能给数学系新生(以及某些有天分的高中生)的最好建议就是:想学一点「经典数学」吗?读Shafarevich的Number TheoryBasic Notions of Algebra,还有那两卷Basic Algebraic Geometry吧!
  • Bertram Kostant (1928-2017):Kostant培养了众多优秀的表示论专家。他最重要的工作大概是几何量子化中的预量子化过程(Kostant-Souriau公式)以及Hochschild同调论中的Hochschild–Kostant–Rosenberg定理。关于前者,我们在很多年前就有讨论的打算——可惜至今那篇post还躺在草稿堆里!
  • Ludvig Faddeev (Лю́двиг Дми́триевич Фадде́ев, 1934-2017):作为Leningrad数学物理学派的领袖,Faddeev关于Yang-Mills场的论著以及将量子逆散射方法应用于量子可积系统的研究使学界受益良多,可惜尚未有机会在本博客上作一讨论。我颇想就后者写一些posts. 然而,我知道,我在这方面的记录并不让人满意。(是的,这是自嘲。)

已经不是新闻了:围棋之后,德州扑克也已被AI攻陷
我们正在见证「机器学习算法革命」的第一波浪潮。值得补充的或许是问题的理论方面。除了1月Science上讨论德州扑克的最新文章外,我们还想特别提请读者注意一篇旧文章:Poker-like games with a bounded number of states are in P.

最后我们还是请出老朋友Scott Aaronson:他新写了一份讨论P v.s. NP的综述。有兴趣的朋友不妨一读。

月旦 XI

For December, 2016

第11期月旦,我们希望回顾一下已过去的2016年。就对未来的影响而言,我认为以下10件事值得更细致的讨论:

  1. AlphaGo和「机器学习革命」。AlphaGo的故事还没有结束:有传言说,现今的中国围棋第一人柯洁已开始使用Google提供的AlphaGo程序进行日常训练(这同时也是对AlphaGo稳定性的进一步测试——在与李世乭的五番棋大战中,程序曾经出现过一次明显的「崩溃」,直接导致了败局),并将在合适的时候代表人类再次挑战AlphaGo.
    技术影响生活。近年来,人类在机器学习领域取得的突破将在可见的未来影响到生活的方方面面。例如,新版的Google翻译已经全面采用了机器学习的模型,迪拜警方开始使用机器学习软件来预测犯罪(将Phillp K.Dick在科幻名作The Minority Report设想的场景化为现实!)。通过机器学习技术训练出的「机器人杀手」已在摩拳擦掌随时准备进入战场,以致联合国下辖的「特定常规武器公约」缔约方开始严肃考虑禁止此类机器人的应用
    历史一再证明,技术的复杂最终将为人的复杂所凌驾并同化。
  2. 中国科学界激辩超大型对撞机。在杨振宁先生打破沉默正式表态后,这场大辩论进入了高潮——同时也是阶段性的尾声。理由很简单:在中国,大型科技项目的命运往往完全取决于个别科学家对最高决策层的影响力。这是美国粒子物理学界寄望于中国的理由(他们厌倦了和国会——以及他们背后的「庸众」——打交道,企图「抄近道」)。讽刺的是,或许这也会成为这个项目最终「无疾而终」的理由:因为一句话打开的大门也可能因为一句话而关上。
    当然,超大型对撞机的命运并未获得正式宣判——在中国的体制下,可能永远也不会得到。我们所能做的,只有等待,等待,再等待。
  3. 量子卫星和量子通讯的未来。相比超大型对撞机,量子卫星项目的命运要好上很多,但依然要受到不确定性的左右。自成功发射之日起,对这个项目实用价值的质疑声就不绝于耳。基本的困难可以用一句话总结:量子通讯在理论上是不可窃听的,代价是它极其容易被破坏。事实上,窃听这一行为本身就构成对信息的破坏。
    难道就不能支持我们搞一些屠龙术的研究吗?科学家小声嚅嗫道。当然他们也只能小声嚅嗫。因为政府和公众的回答一定是:「不能!不能!不能!」
  4. 量子计算机的物理实现。同样是一个关于量子系统控制的问题,但难度要高出不少——有些人认为难到「不可能」的程度。公众过高估计了政府/军方对这个项目的兴趣。事实上,能够抵抗量子计算机的加密方案早就被设计出来了(最著名的是格点加密术),这种新技术对加密体系的冲击不会有某些科普文章所宣称的那样大。理论上,我们还不知道量子计算机是否能高效解决NP问题(尽管只需要一个NP-完全的例子!)。因此,对于「为何要制造量子计算机」的疑问,最好的回答可能还是:
    “Because it’s there.” (may well be an illusion, though!)
  5. 科学界反思他们与公共政治的关系。上述三个项目均涉及科学界与公共政治的关系。在国际政治史上,2016将是记录动荡的一页。面对「英国脱欧」和「Trump当选美国总统」这两件欧美公众政治生活中的大事,科学界同样无法视若无睹——更接近事实的描述可能是,今年,许多科学家表现出了前所未有的投入,而包括他们在内的知识精英和左派群体也遭遇了前所未有的排斥和挫败。
    科学家的社会责任是一个古老但常谈常新的论题。在欧美,交锋最为激烈的阵地是进化论和气候变化(后者是部分科学家反对Trump的原因)。在中国,则是转基因食品。我仅仅想谈一点,即某些科学家应该放下「启蒙」的傲慢。在捍卫真理的同时,他们也应该学着去了解人性。
    “Mit der Dummheit kämpfen Götter selbst vergebens”?不,我不相信。
  6. LIGO和引力波侦测。LIGO没能拿到今年的诺贝尔物理学奖,这出乎不少人的意料。我曾开玩笑说诺奖委员会对广义相对论的偏见是一个百年传统。Hawking或许会支持我的观点。
    引力波最终被侦测到,这代表了一个时代的终结。然而我们更感兴趣的是新时代的开始,是新技术,以及被重新唤起的、对实证宇宙学研究的热情,将如何重塑我们对宇宙的理解。我们已经在纸上耗费太多时间了!
  7. 「量子数学」的综合。弦论学家当然认为弦论是物理——而且是那个唯一正确的theory of everything. 找不到超对称让他们苦恼,但似乎还不足以从根本上动摇他们的信念。
    我认为弦论是数学,或者,借用Maldacena的妙语,string是”Solid Theoretical Research in Natural Geometric Structures”的缩写。它应该被视为Atiyah所提出的「量子数学」远景的一部分。当前我们有大量有趣的猜想、观点,也找到了一些(零星的)证明,但整个图景似乎还没有真正浮现。还有太多细节需要被梳理,被归纳,from bottom to top.
    我相信那将会是数学史上最庞大的一个「纲领」,是前所未有的大综合。我相信我们这一代人会找到它!尽管充分理解可能需要几代人,甚至十几代人的共同努力。
    我对自己说:「千里之行,始于足下!」
  8. 8维和24维的最密球堆积。回到确实的成果,我认为2016年最值得被记住的数学事件依然是解决了8维24维的最密球堆积问题——尽管两篇文章在技术上并不困难。模形式、Leech格点,往远处推,「魔群月光」、弦论……这依然是「量子数学」的一部分,而且是和物理关系并不那么密切的一部分(在和物理的交界处我们有「本影月光」,这是另一个有趣的课题)。理解「量子数学」需要两方面的共同努力:既要从物理汲取灵感,也要持续磨砺现有的技术,攻击那些经典的问题。
  9. p进Hodge理论的现状和未来。关于数论和算术几何,我能说的不多(不要因为《Weil猜想漫谈》而误会了我的背景。我的数论知识少得可怜)。但数论前沿的每一次进展,最终都会增进我们对这个物理世界的理解——我这样相信着。Atiyah和Wiles在这个问题上的观点歧异,我并非选择相信Atiyah,而是选择相信自己的直觉。
    奇怪的是。我的直觉总是和Atiyah一致。或许也不那么奇怪。
  10. 人类数学知识图谱」。最后,我用自己的一个小小梦想结束。如果有机会的话,我希望能和合适的人合作着手推进这个计划。
    于是今年的「月旦十事」构成了Ouroboros的形态:我们又从「十」回到了「一」。这让我感到满意。

新的一年,还请大家继续指教。

d76836fb6aff431

月旦 X

For November, 2016

第10期月旦包括了一些新尝试,个人戏称为“Bohemian rhapsody”——读下去就会明白我所指为何。

2018年的Chern奖开始接受提名1。个人认为综合各方面的情况,Yuri Manin会是一个很合适的人选。另一位贡献巨大,但尚未得到大奖认可的数学家是Goro Shimura(志村五郎)。华裔数学家中,萧荫堂的成就有目共睹。而且,比起上面两位,他工作的领域更接近陈省身先生以及上两届的获奖者:Nirenberg和Griffiths.

Tate  The Arithmetic of Elliptic Curves
这篇综述写于40多年前,当然已经「落伍」了。不过对于算术几何新手来说,还是相当好的入门——补充了《Weil猜想漫谈》中未涉及或者涉及但没有展开讨论的某些论题。

p进Hodge理论则是Weil猜想的「进阶」,也是近几年很热门的领域(Peter Scholze, etc.)之一。感兴趣的读者可以从下面的notes中找到某些motivation:
Youcis  Weil-Deligne representations and p-adic Hodge theory: motivation

参模问题的研究是现代代数几何最热门的领域之一。在这里我们可以看到特别美妙的「大综合」:辛/复几何,标准的代数几何,同调代数,乃至于表示论和理论物理。下面是一篇关于Donaldson-Thomas不变量的新综述,讨论了Joyce和Kontsevich-Soibelman的工作,特别是表示论对象——Hall代数箭图表示 (quiver representation) ——在代数几何中的应用。
Bridgeland  Hall algebras and Donaldson-Thomas invariants

下面是我新近学到的一条定理,陈述简单,但非常有趣:
有限、交换、幂零、可解……这些性质将自动「传递」到所有子群上,统称为群的Markov性质。
(Adian-Rubin) 不存在算法可判定某个有限展示 (presentation) 是否具有某个特定的Markov性质。
Weinberger的Computers, Rigidity, and Moduli: The Large-Scale Fractal Geometry of Riemannian Moduli Space还从类似的角度讨论了几何群论和Riemann几何中的许多结果。这本有趣的小书在某种意义上体现了Gromov几何学派的真精神。
我很希望能有时间多学习一点数理逻辑、模型论、可计算性以及算法复杂度的理论。

我愿意顺带谈谈我自己长久以来的一个「幻想」。因为现阶段它仅仅代表了某些模糊的visions,我无法用精确的语言陈述它——那样它就会成为一个program——但我觉得不妨试着在这里elaborate it to a certain degree.
试着想象一下「所有数学命题」的范畴,「真的」和「假的」都包括在内,态射是命题间的逻辑推导关系。模去等价命题之后,我们得到一张无穷大的有向无环图(directed acyclic graph, DAG)。
直觉给出很多种「连通性」的定义(当然都是不严格的)。比如,我们可以说不存在「真分支」到假命题的「连通」(反之则不然),然而Gödel不完备性定理告诉我们,在「有限生成」的意义上我们无法二分地区分「真」和「假」,等等。
问题当然出在这张图太「大」了。现实一些,在认知科学和人工智能中,人们常用有向无环图(DAG)模型来处理知识表示的问题,区别仅仅在于用可观测的相关性取代了不可观测的因果性:引入概率将DAG做成一张Bayesian网络。通常来说,学习这个网络的结构是一个NP-困难问题(Chickering, 1996)。这似乎在暗示我们,「Leibniz之梦」(用所谓的characteristica universalis穷尽数学真理)不仅在理论上不可能,甚至在计算上也是不现实的,尤其是在P \neq NP的时候。
不过我有一个堪称persistent的vision:数学上时常出现的「曲径通幽」,即从意外的途径得到了某个命题的证明,这种情况事实上是不应该发生的。其原因,是「图」太大而人类的理智太小,因而我们总在局部迷失方向,无法高效地找到「连通路径」,或者错判了端点之间的「距离」。
将数学划分成子领域有时能帮助缓解这一问题:相当于将「图」分而治之。然而这种「算法」是很粗糙的。因此我提出以下问题:
(1)能否将已知的数学知识绘成一张(动态)DAG?如果直接以ZFC公理系统2作为根节点会使图显得太过巨大,我们也可以分层绘图:首先限制到子领域,并从子领域的基本结果出发绘图,再以领域作为节点绘图……然而领域间的联系(短路径)往往是最有趣的!当一个联系足够强的时候,我们应该考虑子领域图的「合并」。
(2) 这张图应该一视同仁地包括所有「确认为真」「确认为假」「未获证明」的节点。所谓证明,无非是一个寻根的过程,这只是探索「图」结构的一部分。许多「不严格的物理论证」,以及众多未确认的猜想,事实上也是对「图」结构的有益探索,我们不应该因为「无根」就抛弃这部分知识——将它们连通起来正是我们画图的目的!
(3) 「有趣的」数学知识构成一张特殊的(动态)图。对于这张特殊的图,我们应该不断更新其信息,并设计、更新探索图结构的高效「算法」,例如:
(3.1)「寻根」。在数学家看来,这可能是最重要的问题,但这绝不应该是唯一的问题。
(3.2) 建立「密度」概念并定义「中心节点」。
(3.3) 判定节点间的(单向)连通性。在连通的情况下寻找最短路径。这些工作应优先对「中心节点」进行。
(3.4) 通过最短距离进一步研究「图」的几何,即考虑其到Riemann流形的嵌入,从而形成「空间感」。
这些「算法」可以是概率的,乃至基于机械学习的,可以是分布式的,但必须是所有人可获取的。
绘制这张人类数学知识的图谱,是属于我的「Leibniz之梦」。

华裔「量子场论学家」徐一鸿3在微信公众号「赛先生」开设了新专栏,有兴趣的读者可以关注。

这个月读了李淼的《超弦史话》。写得比较乱,可能是因为对读者背景的设定有些高不成低不就,以致浅的地方不够直接了当,深的地方又根本没讲透 (Einstein曰:「Make everything as simple as possible, but not simpler.」)。不过也有个别有滋味的地方。

卢昌海兄的《引力波百年漫谈》终于更新到了第三章。熟悉卢兄的读者都知道,他更新专栏的速度一向不快,更有「写写停停」的毛病——例如最出名的《Riemann猜想漫谈》就曾中途停更了将近六年时间。
当然我也没有资格取笑卢兄就是了。下个月会重启(并完成)《Weil猜想漫谈》的连载,在此先谢过大家的宽容和耐心。

继Google和IBM之后,Microsoft也加大了对量子计算机的投入,包括从学术界挖走了4位顶尖学者。MS的量子计算机开发计划基于非交换任意子的拓扑学,算是一种相当非主流的途径。有数学背景的读者可能知道,1986年的Fields medal得主Michael Freedman在淡出纯数学界之后一直在MS进行这方面的研究。

「韩春雨事件」慢慢进入深水区,以我可怜的生物学知识,很难继续追踪各种技术细节了。因此我们点到为止:
11月28日,发表了韩春雨NgAgo实验论文的Nature Biotechnology发表了Toni Cathomen等人的通讯文章Failure to detect DNA-guided genome editing using Natronobacterium gregoryi Argonaute.
与此同时,Nature Biotechnology编辑部也决定担负起自己应尽的责任:让原作者对上述文章提出的担忧展开调查,并补充信息和证据来给原论文提供依据。调查预计在2017年1月底之前完成。届时,编辑部会向公众公布最新进展。


  1.  Nominations should be sent to the Prize Committee Chair:  Caroline Series, email: chair@chern18.mathunion.org by 31st December 2016. Further details and nomination guidelines for this and the other IMU prizes can be found at http://www.mathunion.org/general/prizes/ 
  2. 当然,我们不一定要选用集合论作基础。其他候选者包括范畴论或者最近很流行的同伦型理论。具体的选择应该以方便(3.1)中的「寻根」算法设计为准则。 
  3. 他本人认为这个头衔最为贴切。 

K理论,6维球面和可积性

众所周知,S^6上有一个不可积的殆复结构,来自虚八元数空间\Bbb R^7中的单位球面。在S^6上,是否存在可积的殆复结构(复结构)?几天前,87岁的Michael Atiyah宣布他解决了这个问题:答案是否定的。
Atiyah  The Non-Existent Complex 6-Sphere

除去历史介绍和穿插各处的评论,实际的证明过程只有1页。我的估计是:如果将这1页的内容展开,可以写成十多页的论文。但Atiyah仅仅轻描淡写地指出了关键,把细节留给了年轻人。我必须承认,我还未完全理解这些细节,特别是最关键的、殆复结构的奇偶性计算。
此刻我只能说,如果这个证明是对的,那么,此前没有——我想今后也不会有——数学家能在如此高龄之际解决一个如此知名的经典难题1

熟悉我的人都知道,20世纪后半叶的所有数学家中,我最欣赏和敬佩的就是Michael Atiyah. 很难用言语来形容我的感动。在死亡之前,一刻也不停息地思考真理。我也想成为这样的人。

让我们来谈一点数学吧。我们仅仅想补充一些历史背景,并对证明稍加评论,以期能帮助同样在试图理解这篇论文的「年轻人」。
Atiyah的全集已经出到了第7卷(2014年)。从第5卷(规范理论)开始,是他学术生涯的「后半场」。然而我们要谈的内容大致不超出第2卷(K理论)。

Noether学派工作的一个主题是所谓的「超复数理论」,即研究数系的推广。从复数到四元数,我们丢失了交换性。从四元数到八元数,我们又丢失了结合性。让人惊奇的是,50年代末到60年代初,Bott, Milnor, Kervaire, Adams等数学家发现这些现象本质上是拓扑的,并可以和Hopf纤维化、球面平行化,以及S^n上线性独立的向量场数量上界等经典问题联系起来。4年前我们在这个博客上讨论过这一系列进展,参见《球面平行化与可除代数》和《从Bott周期性谈起 Ⅳ》。
我个人称此类数学为「拓扑表示论」2:研究微分流形上的向量丛作为典型群的表示问题。示性类,从表示论的观点看,对应特征值的齐次函数,乃至齐次幂级数——这些都是经典的内容了。Hirzebruch的书里有最好的总结。特别的,Borel-Serre定理(容许殆复结构的球面仅有S^2S^6)可以归结为示性数的整性/奇偶性要求。
示性类仅仅是理解此类问题的一种观点。注意到向量丛在Whitney加法下仅形成一个半群,为充分利用和表示论的类比,Grothendieck引入了Grothendieck环的概念,从而发展出了所谓的K理论。与示性类相平行的,我们可以直接操作K群(Adams操作)。Atiyah用拓扑K理论处理了上面提及的系列经典问题,简化了利用上同调论和示性类的证明:参见全集第2卷中的文27和文42,后者是一篇经典的文章。
对指标定理的研究使Atiyah考虑了拓扑K理论与自旋表示的关系:研究嵌入于酉群、正交群、辛群的自旋群,或者更一般的,要求背景Lie群带有Cartan对合就可以了——这是所谓的KR理论,囊括了K理论和KO理论,参见全集第2卷中的文39和文43——这两篇文章也都是经典。

Grothendieck-Riemann-Roch定理考虑了代数簇之间的态射在K群层面上的作用。Atiyah-Singer曾考虑过发展一个类似的相对版本的指标定理,但最终的结果仅仅是得到了一个绝对版本的拓扑指标「再定义」:通过Thom同构和Chern特征,X上的椭圆算子唯一决定K(TX)中的某个元素。将紧流形X嵌入到某个欧氏空间Y=\Bbb R^N中,我们得到前推映射K(TX) \to K(TY)=\Bbb Z,拓扑指标即这个映射的像。
事实上,这正是指标定理的K理论证明的关键步骤。
这个思路当然可以推广到KO理论乃至KR理论。在自旋流形上,KR理论给出Dirac算子的模2指标。相比如此直接的K理论定义,这个指标的示性类定义并不明朗,以致这项工作被许多人忽略了。
我想引用前些日子我写给朋友的一封邮件:

It seems to me that not so many people are familiar with the K-theoretic definition of the topological indices, with the exception of some K-theorists (the majority of whom are working mainly on the algebraic side of the story these days, which is, in some sense, “more interesting”), to say nothing of the mod 2 index theory on spin manifolds. It is “the road not taken”, literally.

截至此处,都还是经典的内容——可以追溯到上个世纪60年代。之后就是Atiyah的「纵身一跃」,宣称:借助S^6上任意殆复结构定义的Dirac算子的模2指标都是1.
我还不能完成这个计算。

得知Atiyah预印本的当晚,我兴奋得彻夜难眠,以至于这两天生了一场小病。在身体稍微恢复后我会努力跨过这个障碍。也欢迎熟悉拓扑K理论的同学对我加以指点,或者和我讨论这个困难。

我希望这个证明是对的。此外,注意到指标定理的另一大类证明依赖于热核,将Dirac算子的形变视为殆复结构的形变的结果(是否能够做到?),由此定义适当的殆复结构的「流」(flow),并观察其性状(不仅仅是证明指标定理所需要的、「流」在无穷远处的强耦合极限),这似乎是有趣的。如果我们能用这种方式给出复结构的分析刻画,其意义将远超过S^6(Atiyah相当于只利用了指标的不变性)。 是否有几何分析学家在关注这个问题呢?


  1. 一个必要条件是先活到87岁! 
  2. 这不是一个标准的名词。另一方面,「几何表示论」是一个标准的名词。「拓扑表示论」和「几何表示论」的关系,有点像拓扑K理论和代数K理论的关系。 

月旦 IX

For October, 2016

2016年10月6日是Robert Langlands的80寿辰。为示庆祝,IAS举行了名为Beyond Endoscopy的学术会议。Langlands本人也准备了演讲。老爷子似乎不太满意当前研究几何Langlands纲领的主流方式(我称之为“from top to bottom”)。“from bottom to top”,他(重新)提出了相当「天真」的问题:从几何Langlands纲领的角度看,Atiyah对椭圆曲线上的GL(n)-向量丛的分类应该容许一个到一般可约群的推广。对于高亏格曲线,也到了重新严肃考虑分类问题的时候。
这是一个(有60年历史的)老问题,但始终是一个好问题。

从对偶的观点看,几何Langlands纲领可以理解为S对偶(4维超对称Yang-Mills理论中的Montonen-Oliver对偶),镜对称则是两类弦理论之间的T对偶。在讨论Weil猜想时我们提及过这样的图像:复几何和辛几何是同一棵树上(镜像对称)的不同分支,伪全纯曲线和Picard-Lefschetz理论生长在比Floer同调和Fukaya范畴更加靠近根部的地方。那么,同样“from bottom to top”,我们应该从这棵树的根部开始强调复几何和辛几何的统一性:据我所知,还没有人发展过这样的辛/复统一理论,即使是从与II型弦论类比的角度。
在我看来,这个理论已经有了不少可资利用的「原材料」。我认为一个极具潜力的大方向是探索「经典变换」的范畴化 (categorification):Fourier-Mukai变换无疑属于这颗树的根系(从Atiyah分类的角度看,它也属于几何Langlands纲领的根系)。另一个例子是Laplace变换:我们应该进一步弄清「拓扑递归」(topological recursion) 在整个谱系中的位置。此外,至少还有一个经典变换值得被范畴化,即Legendre变换——无论怎么看,这个变换都应该是理解辛几何的关键工具(例如,将这个变换和Morse理论-Lefschetz纤维化的平行性一同加以考察),但奇怪的是似乎从来没有人从范畴化的角度严肃考虑过它。

V.I.Arnold的遗著Mathematical Understanding of Nature很不幸地陷入了自我重复的泥潭。我一直认为Arnold-Bourbaki (以Serre为代表) 之争的意义被过分夸大了。在教学法之外的领域,Arnold的批判大多偏执而无理(相比之下,无礼就显得不那么重要了)。
苏联「三巨头」所创立的学派中,Kolmogorov-Arnold学派渐趋式微(除了Givental之外,几乎找不出其他有国际影响力的中生代),Gelfand学派和Shafarevich-Manin学派则日益光大,人才辈出——我认为这不是偶然。

2014年获得京都赏之后,Witten在日本的某次聚会上发表了题为Adventures in Physics and Mathematics的自传性演说,包含一些非常有趣的「八卦」,比如Sidney Coleman对他的影响。
Witten提到他会去听数学家讲课,比如在Harvard听Bott讲解Morse理论。另一个(没有提到的)例子是2004年在IAS举行的几何Langlands纲领workshop. 这两堂课都产生了积极的影响:Witten最为数学界称道的能力之一就是把经自己「反刍」过的理论反哺给数学家,为他们提供全新的视角和观点。
然而Witten听过的数学课可不止这些:他甚至听过Shimura的算术几何课!ICM 1986 (Berkeley) 将Fields奖颁给了Faltings,据说Witten在会后「扫荡」了Berkeley的书店,买走了所有可以买到的数论书。遗憾的是,Witten的工作并没有和数论发生显著的互相作用(除了模形式和zeta函数的部分),这些课或许是「白费」了。
但愿下一个Witten能够带领我们理解几何(物理)和数论的隐秘联系!在我看来,这或许是这个世界最深刻的秘密。

Nicholas Gisin有一本100P+的小书Quantum Chance:Nonlocality, Teleportation and Other Quantum Marvels. 据我所知,该书的中译本(周荣庭译)不久前刚刚面世。很纯粹的科普书籍,涉及的内容也异常简单:Bell不等式,以及最初步的量子信息论。推荐给对所谓的「第二次量子革命」/「量子信息革命」感兴趣的朋友。

盛名之下,其实难副:这是我看完Interstellar之后的感受。这当然是一部不错的电影,但似乎不值得如此狂热的追捧。个人更喜欢老片Contact(另一部和Kip Thorne有关的电影)。
也借这个机会读了The Science of Interstellar. Thorne似乎没有Hawking的科普天赋,不过大家都知道,他是一个更高明的赌徒(笑)。很遗憾,今年的诺贝尔物理学奖没有发给LIGO,不过今后几年Thorne还有许多机会。
B.T.W. Hawking会感到羡慕吗?
一个印象:诺奖委员会似乎一贯不太青睐宇宙学研究,尤其是和广义相对论相关的理论部分。从Einstein的年代开始,这几乎成了一个百年传统。

噢,诺奖。我差点忘记了恭喜Bob Dylan!
我希望明年的文学奖可以颁发给我的另一个偶像:Woody Allen.
噢,这只是一个(或许不那么好笑的)玩笑。