Weil猜想漫谈 VI:Grothendieck之梦


绝对Galois群\mathrm{Gal}(\bar{\Bbb F}_q/\Bbb F_q)l-进上同调群H^i(\bar{X}_{et},\Bbb Q_l)上有自然的表示。
(W3)作为生成元,Frobenius元素\pi的所有特征值(作为代数数)有模q^{i/2}.
对(W3)的研究将人们导向现代代数几何某些最深入的猜想。概言之:一方面我们有代数闭链这个「几何」对象,另一方面我们有Hodge结构这个「分析」对象。我们相信这两个对象在某种意义上互相决定。困难在于,在这个方向上稍加前行,我们就会遇到Hodge猜想/Tate猜想。前者作为千禧七大难题之一,目前还看不到任何解决的希望。

在较初等的层面上,Hodge理论的“unreasonable effectiveness”已显露无遗:对于复代数簇,我们可以用它重新诠释大部分Lefschetz的拓扑理论。我们请不熟悉Hodge理论的读者在继续阅读之前,参考《Hodge理论》以了解一些最基本的事实,并阅读《Pauli矩阵,表示论与Kähler恒等式》一文,它给出了强Lefschetz定理(「公理」(8))的分析证明,并叙述了de Rham上同调群的Lefschetz分解——这对于理解标准猜想是必须的。或者,读者可以直接参考目下介绍Hodge理论的最佳书籍:
Voison Hodge Theory and Complex Algebraic Geometry, Ⅰ & II

就Weil猜想而言,Serre发现Weil对(A3)的「正性证明」容许一个复曲线类比。特别的,这个类比可以用Hodge理论阐明:考虑复射影曲线C\displaystyle (\omega_1,\omega_2)=\frac{1}{2\pi\sqrt{-1}}\int_C \omega_1 \wedge \bar{\omega}_2在全纯1-形式的空间H^{1,0}(C)上定义了一个正定Hermitian形式。若\pi:C \to C是一个q度自同构,则(\pi^{*}\omega_1,\pi^{*}\omega_2)=q(\omega_1,\omega_2),因而q^{-1/2}\pi^{*}H^{1,0}(C)上的酉算子,其特征值均模1。利用Hodge对偶将\pi^{*}扩张到H^1(C,\Bbb Q)上,易见其所有特征值均模q^{1/2}.
这提供了证明(W3)的一个思路:首先用Hodge理论证明(W3)在高维复射影簇上的类比(由Serre完成),再考虑如何将这个证明「移植」到特征p的情形。由于此时无法直接应用分析手段,我们必须反过来用Lefschetz的拓扑理论重新陈述Hodge理论的结论。我们将要点总结如下:
(1) 在Kähler流形上,Poincaré对偶可以细化为Hodge分解+Serre对偶。这个组合必须用Lefschetz分解来替代。这是Grothendieck将强Lefschetz定理列入Weil上同调论「公理」的原因。
(2) Lefschetz类\omega/算子L的不同选择对应Hodge结构的不同极化(polarization)。这个选择当然不是任意的:\omega作为闭链映射的象,必然有同调类(1,1). 另一方面,Lefschetz (1,1)-类定理保证这是唯一的限制:闭链映射映满有理(1,1)-类1。在没有Hodge分解时,我们只能定义(1,1)-类A^1_h(X)\mathrm{cl}_X:A^1_r(X) \to H^{2}(X)的象。一个「良定义」显然要求我们首先证明一个类似(1,1)类-定理的Lefschetz型定理2
(3) 在特征p的情形,由于任何Weil上同调论都不可能有实系数(参见上一章开头Serre的例子),我们无法定义Hermitian形式和酉算子。这是最次要的一点,很容易弥补用所谓的Weil形式来弥补。

上述讨论,尤其是(2),将我们引向著名的标准猜想。它属于Grothendieck和Bombieri(独立地)。
Grothendieck Standard Conjectures on Algebraic Cycles
首先,在Lefschetz理论的一侧,我们有3个Lefschetz型标准猜想:
(猜想A) 同构L^{d-2i}:H^{2i}(X)\to H^{2d-2i}(X)诱导同构L^i:A^i_h(X)\to A^{d-i}_h(X)
形式上,我们可以定义L的共轭算子L^{*}. 与猜想A等价的,我们有
(猜想B) 作为(d-1,d-1)-类,L^{*}对应某个余维数为d-1的代数闭链,即落在\mathrm{cl}_X:A^{d-1}_h(X) \to H^{d-1}(X)的象中;
猜想A和猜想B的任一者均可推出较弱的
(猜想C) Künneth同构H^{*}(X \times X) \to H^{*}(X) \times H^{*}(X)诱导同构A^{*}_h(X \times X) \to A^{*}_h(X) \times A^{*}_h(X)
另一方面,作为Hodge指标定理的推广,在Hodge理论的一侧,我们有Hodge型标准猜想2\forall i\leq d,对称二次型A^i_h(X)_{pr} \times A^i_h(X)_{pr} \to \Bbb Qx,y \mapsto (-1)^i x \cdot y \cdot u^{d-2i}为正定型,此处A^i_h(X)_{pr}=\ker(L^{*})\cap A^i_h(X)为Lefschetz分解中的本原(primitive)部分。
d=2的情况即Weil对(A3)的「正性证明」。这基本上是唯一已知的情况!

Grothendieck原本希望通过证明强Lefschetz定理和标准猜想来证明Weil猜想。在他看来,除了(一般基域上的)奇点消解,标准猜想是整个代数几何中最为重要的问题。Deligne对Weil猜想的证明避开了标准猜想,而强Lefschetz定理则反过来成为这个证明的一个推论。这让Grothendieck感到失望。
40多年过去了,标准猜想仍是「臭名昭著」的开问题:即使将最弱的猜想C限制在特征0的情况下,也只有部分的结果。一个截至90年代的总结是
Kleiman the Standard Conjectures,in Motives
20多年来,对「Grothendieck之梦」的探索确实有所进展(但没有本质的突破)。MathOverflow上有一份更加简短的、截至2015年的总结可供参考。


  1. 作为丰富除子(ample divisor)W的象,\omega必须在(1,1)-类的整格点中选取:这是Kodaira嵌入定理的要求。 
  2. 注意,这并非Hodge猜想。 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s