Weil猜想漫谈 V:碧海潮生


构造Weil上同调并不容易。我们来看Serre的一个例子:
考虑椭圆曲线C的自同态环\mathrm{End}(C)\mathrm{End}(C) \times \Bbb Q在2维线性空间H^1(C)上有自然的表示作用。对于定义在\Bbb F_{p^2}上的超奇异椭圆曲线C\mathrm{End}(C) \times \Bbb Q\Bbb Q上的可除四元数代数,因而在\Bbb R上和\Bbb Q_p上(从而在\Bbb Q上)不存在2维表示。也即是说,Weil上同调论的系数必须要在\Bbb Q_ll \neq p中寻找。
另一方面,Grothendieck等人确实成功构造了所谓的l-进上同调论:对于定义在特征p的有限域\Bbb F_q上的光滑射影簇,和任意素数l \neq p,存在一个以\Bbb Q_l为系数的Weil上同调论,满足上一章定义的「公理」(1)-(8). 对于定义在\Bbb Q上的射影簇V,经「好的」模p约化所得的射影簇V_pl-进上同调群与作为复代数簇的V的de Rham上同调群有相同的秩1

我们承诺过我们的漫谈将会是几何式的。对于「抽象代数几何」苦手——例如,对于束论和同调代数毫无认识的人——上述定义,加上对上同调论的几何想象,已足以支撑他们完成这次「漫步」——尽管会丢失许多细处的风景。这些人可以就此止步了。当然,为了形成正确的「比例感」,我们还必须提醒:l-进上同调论的构造,以及「公理」(1)-(7)的验证绝不是轻易的,(8)则尤其困难。不要被简单的叙述所蒙蔽,而小看了Grothendieck, M.Artin, Verdier等人的工作!
剩下的人,让我们继续前进。

应用代数拓扑于代数几何的早期尝试一直为如下难题所困扰:代数簇上的「天然」拓扑——Zariski拓扑——太过「粗糙」(开集/闭集太少)2。Grothendieck试图绕开这个难题:毕竟,对于上同调论的应用而言,束才是更基本的对象。而束的定义不一定要依赖于底空间上的开集。更进一步,我们可以问一个「天真」的问题:什么是「开集」?Grothendieck以相对性观点 (relative viewpoint) 知名,在他看来,「开集」同样是对象间的态射:在复拓扑的情况,我们可以取万有对象为\Bbb C^n,态射为局部解析同构,从而将复拓扑「传递」到一般解析簇上。在Zariski拓扑的情况,Serre提出可以用平展态射 (étale morphism)来替代局部解析同构。对于局部Noetherian概型,可以将平展态射粗略地理解为「非分歧覆迭」,我们请读者记住这个几何图像3
对于簇/概型X,用所有对象到X的平展态射的范畴取代(过小的)Zariski开集的范畴,我们得到所谓的平展拓扑 ( étale topology) 。当然是上述范畴到Abel群范畴的反变函子,满足熟知的一系列公理。特别的,应用著名的[Grothendieck, 1957] (「东北论文」)的观点:截影函子作为左正合函子,定义其右导出函子为束的上同调群,由此得到的束上同调论称为平展上同调 (étale cohomology)。
在法语中,“étale”可以与「潮平两岸阔」的意向相联系,这是Grothendieck作为诗人的一面4

回到有限域\Bbb F_q上的射影簇X。有鉴于开篇提到的例子,自然会考虑H^i(X_{et},\Bbb Q_l)能否提供一个Weil上同调论——这被证明是一个失败的尝试。l-进上同调群的「正确」定义是H^i(X_{et},\Bbb Z/l^k \Bbb Z)逆向极限(与\Bbb Q_l作张量积以抹去所有挠元)。很遗憾,通常人们依然用H^i(X_{et},\Bbb Q_l)来表示这个上同调群,这引发了大量混淆。
通过上述方式定义的l-进上同调论是一个Weil上同调论。从定义的复杂度可以想见,「公理」(1)-(7)的验证全都是不平凡的定理,读者必须到SGA(或者更现代的,我们推荐Milne的讲义)中寻找细节。作为算术几何和表示论的基础工具,平展上同调是任何严肃的代数/数论研究者都无法逃避的一课。

我们用两段相关的讨论来收尾。首先是关于Tate模
考虑定义在\Bbb F_q上的Abel簇X\bar{X}=X \times \bar{\Bbb F}_q. \bar{X}上的l^k-挠元构成一个逆向系统,其逆向极限T_l(X)称为X的Tate模。
这个定义与l-进上同调的定义存在明显的类似性。事实是,作为自由\Bbb Z_l-模,T_l(X)H^1(\bar{X}_{et},\Bbb Z_l)对偶,从而可以「代替」H^1(\bar{X}_{et},\Bbb Z_l).
这个对象有表示论上的兴趣:\Bbb F_q绝对Galois群自然地作用于T_l(X),前者的生成元不是别的,正是Frobenius元素\pi。特别的,对于椭圆曲线,(A3)和它的种种变体都等价于:\pi在2阶自由模T_l(X)上作用的2个特征值(作为代数数)均有绝对值q^{1/2}.
正如我们之前所说的,(A3)的表示论证明对椭圆曲线和高亏格曲线的Jacobi簇考虑了作为Frobenius元素表示的Tate模,作为「第一同调群」,它包含了曲线的所有同调论信息5
对任意光滑射影簇XH^i(\bar{X}_{et},\Bbb Q_l)上同样有自然的Galois表示。如果我们对Langlands对应作最粗略的解读:「Galois表示-自守表示」,「Frobenius特征值-Hecke特征值」,那么这个对应会将我们自然地导向Ramanujan-Petersson猜想。
迟一些时候,我们会再次回到这个话题。

最后,我们还想总结一下已知的4种经典「Weil上同调论」:
(1) Betti上同调:由注2中提及的“GAGA”,我们可以将其等同于复代数簇上的复系数奇异上同调。
(2) l-进上同调:和Betti上同调构成了「提升/约化」的关系。
(3) 代数de Rham上同调:利用Kähler微分的概念,将复代数簇上的de Rham上同调推广到任意特征0的代数簇上。
(4) p-进上同调( 晶状上同调刚性上同调 ):可以认为是代数de Rham上同调的「模p约化」,以Witt向量为系数。这是一种比l-进上同调更「透彻」的上同调论:可以侦测到挠元,避开了l \neq p的限制,等等。特别的,可以用它来证明(W3)。我们将在漫谈的最后回到这一点上来。
(2)(3)(4)的构造都与Grothendieck密切相关,这构成了他工作的一大主题。如同注1所提及的,它们可以视为母题上同调的不同「实现」。


  1. 这个性质启发了Grothendieck提出动机理论:代数几何对象实际上仅有一个「上同调论」和这个「上同调论」在不同位(place)上的「实现」,或者说种种上同调论均可factor through这个假想中的「万有上同调论」——称为母题/动机(motivic)上同调。 
  2. 因此,和复拓扑的正面类比结果就显得尤为难得,最著名的例子可能是Serre的“GAGA”:对于复代数簇上的凝聚束 (coherent sheaf) ,Zariski拓扑给出和复拓扑相同的束上同调论。 
  3. 这个观点通过基本群导向Grothendieck的Galois理论。 
  4. 在《播种与收获》(Recoltes et Semailles) 中,Grothendieck曾将自己做数学的方式形容为「潮水渐涨」。 
  5. 事实上,作为Galois表示,Tate模决定了椭圆曲线的同源类。Tate证明了有限域的情况。对于代数数域上的Abel簇,类似陈述称为Tate同源猜想,Faltings在证明Mordell猜想的过程中证明了这个猜想。

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s