Weil猜想漫谈 IV:拓扑征服


「拓扑征服」不是地道的汉语。然而Norman conquest确乎是地道的英语——我们取这个意思。

让我们回到代数几何。迄今为止我们还未给出(A1)(A2),特别是(A3)的证明。我们希望在(W1)(W2)(W3)的框架下统一考虑在几何方面所需的准备工作。约定如下记号:X为定义在\Bbb F_q上的d维光滑射影簇,\bar{X}=X \times \bar{\Bbb F}_q.

Hasse找到了这样一条几何线索:在射影簇\bar{X}上,我们可以定义Frobenius自同态\pi,\pi^2,\pi^3,\cdots(请读者考虑具体的定义方法并证明\bar{X}的不变性。)特别的,X上的\Bbb F_{q^n}-点集X(\Bbb F_{q^n})正是自同态\pi^n:\bar{X} \to \bar{X}的不动点集,估计N_n的大小转化成了不动点计数的问题。关于后者,我们有经典的:
(Lefschetz不动点定理) 对于复代数簇X,态射f:X \to XH^i(X,\Bbb Q)上诱导线性表示f^{*}。假定f\Gamma_f和恒同映射的图\Delta(均为X \times X的子集,我们将其视为代数几何意义上的对应)横截相交,我们定义f的不动点为这些交点在X上的投影。不动点的个数\displaystyle N=\sum_i(-1)^i \mathrm{tr}(f^{*}|H^i(X),\Bbb Q).

当然,我们面临的问题依旧是对于有限域上的X定义「合适」的上同调论,使得Lefschetz不动点定理的类比成立。假设我们已做到这一点,(W1)的证明是轻易的:\displaystyle \sum_{n \geq 1}\frac{N_n}{n}T^n=\sum_i\sum_{n\geq 1}(-1)^i \mathrm{tr}((\pi^{*})^n|H^i(X))\frac{T^n}{n},也即
\displaystyle Z_X(T)=\prod_i \det(1-\pi^{*}T|H^i(X))^{(-1)^{i+1}}
此时P_i(T)=\det(1-\pi^{*}T|H^i(X)),如果我们能证明\dim H^i(X)=\dim H^i(X(\Bbb C),\Bbb Q),自然也就得到\deg(P_i)=b_i(X).
\pi^{*}H^{2d}(X)上的作用是乘以q^d. 不难发现(W2)相当于Poincaré对偶:若\alpha_1,\cdots,\alpha_s\pi^{*}H^i(X)上的特征值,则q^{2d}/\alpha_1,\cdots,q^{2d}/\alpha_s\pi^{*}H^{2d-i}(X)上的特征值。

将上述讨论一般化:
给定域k(任意特征)和K(特征0),记k上光滑射影簇的范畴为P,分次K代数的范畴为R_K。定义Weil上同调函子为反变函子H^*:P \to R_K,对所有d维射影簇X,满足以下公理:
(1,有限公理) H^i(X)是有限维K-线性空间;
(2,消没公理) H^i(X)=0,除非0\leq i\leq 2d
(3,定向公理) H^{2d}(X)=K
(4,Poincaré对偶) 存在非退化配对H^i(X) \otimes H^{2d-i}(X) \to H^{2d}(X)=K
(5,Künneth公式) 投影映射X \times Y \to X,Y诱导典范同构H^{*}(X) \otimes H^{*}(Y) \to H^{*}(X \times Y)
上述5条公理是一般上同调论的共性。我们希望Weil上同调还能给出代数几何特有的
(6,闭链映射) 记A^i_r(X)X中余维数为i的代数闭链的有理等价类所张成的\Bbb Q-线性空间。要求存在\mathrm{cl}_X:A^i_r(X) \to H^{2i}(X)满足函子性,与Künneth公式相容,并在X退化为单点时给出嵌入\Bbb Q \subset K.
Lefschetz不动点定理的成立仅依赖于上述6条公理。也就是说,只要我们能构造出满足条件的Weil上同调理论,并证明与K \to \Bbb Q相应的基域变换定理,就能给出(W1)(W2)的证明1

对于\Bbb C(乃至一般的特征0的代数闭域),Kähler流形上的de Rham上同调给出Weil上同调的范例。假定H是背景射影空间中的超平面,j:W=H \cap X \to X是光滑嵌入,我们有额外的:
(7,弱Lefschetz定理) j^{*}:H^i(X) \to H^i(W)i \leq d-2时是同构,在i=d-1时是单同态。
\omega=\mathrm{cl}_X(W)\in H^2(X),并定义Lefschetz算子L:H^i(X)\to H^{i+2}(X)x \mapsto x \cdot \omega. 此时可以用Hodge理论证明
(8,强Lefschetz定理)L^i:H^{d-i}(X) \to H^{d+i}(X)是同构。
我们当然希望我们构造的Weil上同调和Kähler流形上的de Rham上同调有最大程度的平行性:满足(7)(8)两条「公理」。这原本是一个有独立意义的课题,但最终也被证明和(W3)相关:(8)在某种意义上「等价」于(W3). 我们将这个话题留待后叙。

暂且放下(8)不论,至少这一点是清楚的:仅仅对(1)-(6)作形式推理并不足以证明(W3),我们仍需要额外的「材料」。
让我们先考虑(A3):对代数曲线C和Frobenius自同态\pi^n应用不动点定理,\displaystyle N_n=\mathrm{tr}((\pi^{*})^n|H^0(X))-\mathrm{tr}((\pi^{*})^n|H^1(X))+\mathrm{tr}((\pi^{*})^n|H^2(X))
注意到\mathrm{tr}((\pi^{*})^n|H^0(X))=1\mathrm{tr}((\pi^{*})^n|H^2(X))=q^n,Hasse-Weil上界等价于估计\displaystyle |\mathrm{tr}((\pi^{*})^n|H^1(X))| \leq 2gq^{n/2}
Hasse (g=1) 和Weil (g>1) 对这个估计给出了多种多样的证明。从现代观点看,这些证明大致可以分成2类2。其一是考虑椭圆曲线和高亏格曲线的Jacobi簇作为交换代数群的l-进表示。这类证明可以推广到Abel簇上 (Weil). 第二类证明更加几何化:早在Lefschetz之前,Hurwitz就对复代数曲线C建立了不动点定理的一个变体。特别的,如果将定理右端上同调群的特征全部改写成特定曲线的相交数,就可以避开上同调论。将这个相交理论平行迁移到非特征0的代数闭域上,则上述估计是C\times C上的Castelnuovo-Severi不等式的推论。此即所谓的(A3)的「正性」(positivity) 证明。
为了完成这两个证明,Weil一手发展了现代意义上的抽象Abel簇理论,并为一般域上的相交理论建立了严格的代数基础3
在今后的漫谈中,我们会在更大的框架下回顾这两类证明。

总结一下。现在我们手头有两个任务:一是在特征p的域上构建一个Weil上同调理论,要求满足(1)-(6)(这允许我们证明(W1)(W2)),最好还能满足(7)(8). 二是在这个Weil上同调论的基础上,寻找更深入的理论,以求证明(W3).

终于,轮到Grothendieck登场了。


  1. 这一点是Serre告知Grothendieck的。 
  2. 事实上在椭圆曲线的情况,Hasse的第一个证明是复乘理论的应用。我们不会讨论这个证明,仅仅指出它也应该被纳入到Eichler-Shimura-Langlands的大图景中。
  3. 对这段历史感兴趣的读者可以参阅 Milne The Riemann Hypothesis over Finite Fields: From Weil to the Present Day. 几年前我们在《Weil的广博》一文中用粗线条勾勒过Weil在这几个方面的工作。 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s