Algebraic Number Theory: Dirichlet’s Theorem Revisited


Number theory: An Approach Through History from Hammurapi to Legendre选择Legendre作为征程的句点,自然有其理由:在阅读Disquisitiones Arithmeticae时找到灵感进而提出Weil猜想的人,比谁都深刻地认识到“还不到总结Gauss的时候”。在Weil去世的16年之后,我们积累了更多证据支持这一判断,例如新科Fields奖得主Bhargava同样是在阅读Disquisitiones Arithmeticae时得到了PhD论文的灵感,从而做出了推广Gauss复合律的系列工作(,,)。
然而就思想史的脉络而言,我更愿意将Gauss和Einstein这样分水岭式的人物归入“旧世界”。Gauss,如同Euler, Lagrange和Legendre,是彻头彻尾的经验主义者,他们以巨人之姿勇敢地投身广袤的现象之海,以超凡的计算能力从中萃取原理。在Gauss和Riemann之间,在古典和现代之间,真正开启新范式的,是Gauss的狂热崇拜者、“一流数学家中的二流人物”——Dirichlet. 如Minkowski所说,”he possessed the art of connecting a maximum of seeing thoughts by means of a minimum of blind formulas”1,这对Riemann,乃至整个现代数学都产生了决定性的影响,数学自此在“现象-原理”之上获得了第三个维度“图景”——不仅要理解数学事实,更要将其放置于最合适的框架下来理解。

穿过Weil立下的“海格力斯之柱”(Pillars of Hercules),我想讨论Dirichlet最知名的工作——关于算术级数中素数分布的Dirichlet定理原论文发表于Abhandlungen der Königlichen Preußischen Akademie der Wissenschaften von 1837,有现成的英译本可供参考。

(Dirichlet定理)给定互素的aq,算术级数a+nq(n=1,2,\cdots)包含无穷多个素数。

如今看来,这个结果是完全初等的。然而,Dirichlet的证明却触碰到了Euler, Gauss甚至Riemann都未曾触碰到的领域。为了阐明“原理”,二次域的知识已经足够,但只有在类域论臻于完备后,才能找到这项工作在整体“图景”中的合适位置。

Euclid’s Theorem
q=1时Dirichlet定理退化为Euclid定理。Euler的证明给出了更精细的结果:在\mathrm{Re}(s)>1上取对数函数的主支,\displaystyle \log\zeta(s)=\sum_p \log\frac{1}{1-p^{-s}}=\sum_{n,p}1/np^{ns}
n \geq 2的部分绝对收敛。令s \to 1,得到
\displaystyle \sum_{p\leq X}\frac{1}{p}=\log\log X+O(1)X \to \infty
Dirichlet定理可以用完全类似的方式精细化:
\displaystyle \sum_{\substack{p\leq X \\ p\equiv a\pmod{q}}}\frac{1}{p}=\frac{1}{\phi(q)}\log\log X+O(1)X \to \infty

The Theory of Dirichlet Characters
为得到形如\displaystyle \sum_{\substack{p\leq X \\ p\equiv a\pmod{q}}}\frac{1}{p}=\frac{1}{\phi(q)}\sum_{p\leq X}\frac{1}{p}+\text{residue terms}的代数恒等式,Dirichlet首先假定d为素数并乞灵于单位根/分圆域理论。从今天的观点看,他将有限交换群的不可约复表示(Fourier分析的别名)引入了数论。
我们仅需要最简单的事实:令G_q=(\Bbb{Z}/q\Bbb{Z})^{*}特征\tilde{\chi}:G_q \to GL_1(\Bbb C)构成L^2(G_q)的完备正交基。对偶地,G_q也构成L^2(\hat{G_q})的完备正交基。
\tilde{\chi}扩张到\mathbb{Z}上,即得到Dirichlet特征\chi:\Bbb Z \to GL_1(\Bbb C). 为\displaystyle \frac{1}{p}赋权\displaystyle \frac{1}{\phi(q)}\sum_\chi \bar{\chi}(a)\chi(p),我们得以筛选出满足同余条件的p
\displaystyle \sum_{\substack{p\leq X \\ p\equiv a\pmod{q}}}\frac{1}{p}=\frac{1}{\phi(q)}(\sum_{p\leq X}\frac{1}{p}+\sum_{\chi\neq 1}\chi(a)\sum_{p\leq X}\frac{\chi(p)}{p})
目标转为对\chi \neq 1证明\displaystyle \sum_{p\leq X}\frac{\chi(p)}{p}=O(1)X \to \infty.

The Dirichlet L-function
上述推理引向对Dirichlet L-函数的研究:
\displaystyle L(s,\chi)=\sum_{n=1}^{\infty}\frac{\chi(n)}{n^s}=\prod_p \frac{1}{1-\chi(p)p^{-s}}
\mathrm{Re}(s)>1上取对数函数的主支,\displaystyle \log L(s,\chi)=\sum_{n,p}\chi(p)^n/np^{ns}n \geq 2的部分依然绝对收敛。目标再次转为对\chi \neq 1证明L(1,\chi)\neq 0.
如下解析事实足以完成证明:\displaystyle \prod_\chi L(s,\chi)(如同L(s,1)=\zeta(s)一样)在s=1处有单极点。
Serre A Course in Arithmetic

Dirichlet的证明更加迂回,也因此包含了远为丰富的内容。我们先陈述较为一般的现代观点:给定\Bbb Q的代数扩张K
(1)Dedekind zeta函数\zeta_K(s)在极点s=1处的留数包含了K的整体算术信息,通常称为类数公式
(2)若K是Galois扩张,则\zeta_K(s)可以分解为Artin L-函数的乘积;
(3)若K是Abel扩张,则由Kronecker-Weber定理(或者更一般地,Artin互反律),Artin L-函数与本原(primitive)Dirichlet L-函数存在某种形式的一一对应;

Dirichlet完整地处理了K为二次域/\chi为本原二次特征的情况:此时
\displaystyle \zeta(s)L(s,\chi)=\zeta_K(s)K=\Bbb Q(\sqrt{\chi(-1)q})

(1)通常将二次域类数公式归于Dirichlet名下2
\displaystyle \mathrm{Res}_{s=1}\zeta_K(s)=\frac{2\pi h_K r_K}{w_K\sqrt{|D_K|}}
其中h_K为类数,r_K正规子(regulator),w_KK包含的单位根个数,D_K为判别式。
(Leibniz公式)取q=4,此时唯一的非平凡Dirichlet特征\chi满足\chi(1)=1\chi(3)=-1L(1,\chi)=\pi/4. 对照类数公式,这即是说\Bbb Q(\sqrt{-1})有类数1。

(2)令G=\mathrm{Gal}(K/\Bbb Q)为Abel群,\rho:G \to GL(1),定义Artin L-函数
\displaystyle L(s,\rho)=\prod_p\frac{1}{1-\rho(\sigma(p))p^{-s}}
此处\sigma(p)Frobenius自同构,约定表示\rho(\sigma(p))定义在惯性群的不变子空间上。
分解\displaystyle \zeta_K(s)=\zeta(s)\prod_{\rho \neq 1} L(s,\rho)是纯代数的:将正则表示分解为不可约表示。
对于二次域KG=\{1,-1\},此时仅有一个非平凡的\rho\rho(\sigma(p))=0当且仅当p分歧(ramified);\rho(\sigma(p))=1当且仅当分解(split);\rho(\sigma(p))=-1当且仅当p惯性(inert)。也就是说,p为奇素数时,\rho(\sigma(p))等同于Legendre符号\displaystyle (\frac{D_K}{p}).

(3)令K=\Bbb Q(\sqrt{\chi(-1)q})。暂时假定q是不包含平方的奇数。一方面,唯一的以q为导子(conductor)的本原二次Dirichlet特征\chi(p)Jacobi符号\displaystyle (\frac{p}{q});另一方面,判别式D_K=(-1)^{(q-1)/2}。此时Artin L-函数L(s,\rho)与Dirichlet L-函数L(s,\chi)的对应\displaystyle (\frac{D_K}{p})=(\frac{p}{q})不是别的,正是二次互反律

(3)可以用adele的观点理解:以\Bbb A\Bbb Qadele环\Bbb A^{*}=\Bbb Q^{*}\times\Bbb R_{+}^{*}\times \hat{\Bbb Z}^{*}.
对于K=\Bbb Q(\xi_q)G=\mathrm{Gal}(K/\Bbb Q)=G_q. 取逆向极限,由Kronecker-Weber定理知\displaystyle \mathrm{Gal}(\Bbb Q^{ab}/\Bbb Q)同构于\hat{\Bbb Z}^{*},进而同构于\Bbb Q^{*} \backslash \Bbb A^{*}=GL_1(\Bbb Q)\backslash GL_1(\Bbb A)的连通分支:Artin L-函数和Dirichlet L-函数源于同一个对象的一维表示。

作为(3)的“相对”版本,对于整体域K的Abel扩张,Dirichlet特征推广为Hecke特征。Hecke特征理论可以诠释为adele对象上的调和分析,这是“Tate论文”的主题。

对于K的非Abel扩张,Langlands考虑了GL_n(\Bbb A)自守尖点表示以及相应的L-函数。此种情况下的Langlands互反猜想(reciprocity conjecture)是Langlands函子性猜想(functoriality conjecture)的一部分。为了理解与之相关的表示论,他构建了一个庞大的理论框架,通常以Langlands纲领之名为人所知。

今时今日的数学中存在2类L-函数:一类L-函数源于动机,关于其解析性质(类似于上面的(1)),我们有数学中最知名的一些猜想:Riemann猜想,BSD猜想,etc.;另一类L-函数则源于自守表示论,更浪漫一些,“无穷维的对称”。证明他们是同一尊坚纽斯神(Janus)的两面,是Langlands和许多数学家孜孜以求的梦想,当然也不妨说是,Dirichlet之梦。


  1. Felix Klein, Development of Mathematics in the 19th Century, translated by M.Ackerman
    Arnold在某次访谈中提及的轶事在当代语境下诠释了这句名言:
    The Bourbakists claimed that all the great mathematicians were, using the words of Dirichlet, replacing blind calculations by clear ideas. The Bourbaki manifesto containing these words was translated into Russian as “all clear ideas were replaced by blind calculations.” The editor of the translation was Kolmogorov. His French was excellent. I was shocked to find such a mistake in the translation and discussed it with Kolmogorov. His answer was: I had not realized that something was wrong in the translation since the translator described the Bourbaki style much better than the Bourbakists did.
    我一直怀疑Arnold所说的误译其实是”all clear calculations were replaced by blind ideas”(这才是对Bourbaki风格的“最佳”描述)。由于他本人的口误或者记者的失察,把”calcultions”和”ideas”的位置对调了。 
  2. 第一个以某种形式得到二次域类数公式的人是Gauss,但一如既往,他没有发表这个结果。 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s