我们需要怎样的数学教育


本文是Matrix67同学同名文章的读后感。我简单说说我的想法。

不同的人,学习数学的目的很不一样。数学的应用价值当然广泛,不过这个世界上也确实有不少韩寒:对他们来说,初二水平的数学就够用了。经常听到的论调是,数学是理性的最高表现形式,因而无论志在何种职业,都应该学一点数学,得到一点思维上的训练。我觉得这个观点似是而非。如果学习数学是为了训练理性思维,那么全民必修的该是一门逻辑课。数学理论当然是逻辑训练的好材料,然而,高深的数学理论并不带来更多逻辑上的挑战——代数几何和平面几何都只用到最基本的三段论而已;另一方面,数学训练的必要性也不等同于充分性。我的朋友中就颇有几个精于数理而迂于世情的——对数学之外的事情,他们比一般人更糊涂。我依然认为他们是芸芸众生中最“聪明”的,但这种“聪明”似乎不是大众学习数学的初衷。事实上,大众对这些“聪明人”采取敬而远之的态度。

很多人废寝忘食地背下了大量公式来应付数学考试,很快忘得一干二净之后又安慰自己说好歹算是训练了逻辑思维——这是毫无含金量的廉价安慰。对大部分人来说,初二水平的数学真的够用了。如果他们愿意学得更多,或者对数学史抱有考古的兴趣,那是个人自由。剥除有限的实用价值,精巧的理论反而是一种不必要的折磨。数学当然有独立于实用价值之外的美,但是强迫每个人都去欣赏,那是大规模犯罪。

不少人还是要用到高等数学的。这里需要澄清的是,所谓“高等数学”,实在是很初等的数学。对于工科学生来说,微积分和线性代数当然是必要的课程。物理系学的更多一些:微分方程,特殊函数,群论外加一些泛函分析。在理论物理的前沿,他们会遇到纤维丛,辛几何和共形场论。然而这仍然只是数学的一部分。我想除了数学家之外,不会有人对类域论感兴趣,更不要说Langlands纲领。这种冷漠是可以理解的。他们大可以理直气壮地问数学家,如果散在的有限单群不是26个而是62个,太阳难道会从西边升起来吗?不能排除这样的可能性,不过,必须承认,单群与星体运行之间的关系,即使存在,也远超出我们的想象力。

工科数学教育最显著的问题似乎是“形式化”。这大概是工具理性的一种表现:为了“短平快”地掌握所需的数学,工科学生学习数学的速度往往是数学系学生的数倍。所以他们几乎从来没有机会弄懂他们所学的究竟是些什么玩意。如果你让他们解释dx是什么,他们给出的回答与其说是数学,不如说是玄学。“以其昏昏使人昭昭”是不可能的,于是这在工科院系成了代代相传的顽疾。唯一的安慰是这不妨碍他们做微积分,做得比数学系的学生还要好。我对这个问题抱宽容的态度:毕竟,Newton也说不清dx是什么。在我看来,真正的症结在于除了公式和计算,工科数学教育所余无几。真正应该强调的是视觉化,讨论大量应用的实例,在实践当中掌握理论。证明是相对次要的事情:如果你对你在做什么有充分的感觉,知道各种事实是如何恰当地组织起来的,写出证明只是一种形式。反之,我不认为“记住”诸如行秩等于列秩的证明有什么用处——即使记住了也很快会忘记,更何况如果你动手解过几个线性方程组,就能“理解”这个显然的结论。

Matrix67同学力陈美感的重要性。然而在我看来,对以数学为志业的人来说,数学必然是“丑”的。这好比游客登山,只看到大道平坦,景致优美,而开荆辟棘的艰辛只有开山者自己能够体会。数学工作者说数学是“美”的,是流尽血汗后终于登顶看到绝美风景的震撼与欣然,这种美和欣赏数学之美的“美”很不一样。多数人以学习数学理论来求得一点审美的愉悦为苦,和真正的数学工作者相比,这不过是“十指不沾泥,鳞鳞居大厦”。另一些人把“数学之美”作为一种广告词。恕我直言,这些人本身大多只是“观光客”,物以类聚,所招徕到的也只能是一群“观光客”。

如何培养未来的数学工作者是一个很大的问题,我不够资格来谈。但至少有一点我是有把握的:应该少谈一点形而上的玩意,多锻炼真功夫。这并不是说要放弃整体的观点。恰恰相反,这意味着在“专”的基础上“博”:仅仅知道Riemann猜想是远远不够的,要知道它如何和整个数学相互作用,在整体图景中处在一个什么位置。那些仅仅将Riemann猜想作为谈资的人,我是不太佩服的。

Matrix67君指责高数课本“荒唐”。宽容一点,我们应该允许工科数学甚至文科“数学”有自己的逻辑和教学方式。严厉地说,则M君只能算是“登堂”,离真正“入室”尚有不小的距离。以他的观点来教育未来的数学工作者,我以为不妥当。

M君的文章,只适用于像他那样的“数学爱好者”。

3 thoughts on “我们需要怎样的数学教育

  1. GTR says:

    关于“训练理性思维”,摘引一段Wheelock’s Latin教本序言中的话以资参照:“Why, then, exercise ourselves in the actual translation of Latin? “Inexorably accurate translation from Latin provides a training in observation, analysis, judgement, evaluation, and a sense of linguistic form, clarity, and beauty which is excellent training in the shaping of one’s own English expression,” asserted Frederic Wheelock. There is a discipline and an accuracy learned in the translation process which is transferable to any thinking and reasoning process, such as that employed by mathematicians. In fact, our father’s beloved editor at Barnes & Nobel, Fr. Gladys Walterhouse, was the Math Editor there and yet an ardent appreciator of Latin and its precision.”若以“理性思维训练”的角度来看(而暂不论其“实用价值”),Latin的功效甚至更优于数学。

  2. hyh says:

    其实就连微积分,真正理解的人都不多(会公式的人倒是不少~)

    不存在最好的坐标系,这句话有几个人能理解?

    木遥也讨论过类似的问题,参见这里:http://blog.farmostwood.net/623.html

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s