从模函数到单值化定理 参考文献


我们举出一些参考文献,以补充叙述中忽略的技术细节。

 

最常用的信息源是

Wikipedia   在互联网时代,它为每个人提供了成为半吊子专家的机会。

关于复分析的经典理论,以下著作仍是难以超越的

Ahlfors   Complex analysis : an introduction to the theory of analytic functions of one complex variable

关于复流形和单值化定理,我们的叙述沿用了Shafarevich的框架

Shafarevich  Basic algebraic geometry Vol.2

我们参考了讨论椭圆函数和自守函数的经典著作

Siegel  Topics in complex function theory

关于模形式,我们推荐

Serre  A course in arithmetic

Gunning   Lectures on modular forms

 

以下简要罗列各章的参考文献。

 

第1章  模函数\lambda的图像取自李忠  复分析导引

 

第2章   代数奇点的定义及其初步性质可以在Ahlfors的书中找到。

 

第3章   Montel正规性判则是Arzelà-Ascoli定理的推论,后者可以在任何一本泛函分析的教程中找到,例如Rudin  Functional analysis,也可参见Rudin“分析三部曲”中的另外两本或Ahlfors的书。

Montel正规性判则对亚纯函数的推广常被称为Marty正规性判则。

 

第4章  万有覆叠映射和Riemann面的单值群的性质可以参见任何一本拓扑学教程。我们推荐

Doburovin, Fomenko, Novikov   Modern geometry: method and applications  Vol.2

Picard定理的微分几何证明可参考李忠的书,或龚昇  简明复分析

Poincaré举出的高维Riemann映射定理的反例也可以参见此书。

本章和第6章中提到的Poincaré的“灵感”是数学史的重要题材,兼有心理学上的趣味。在这方面有名著

Hadamard  The psychology of invention in the mathematical field

 

第5章

我们只浮光掠影地提到theta函数最初步的性质。关于Jacobi theta函数,Wolfram math world上有详细的资料

http://mathworld.wolfram.com/JacobiThetaFunctions.html

对theta函数最完备的讨论是

Mumford   Tata lectures on Theta

 

第6章

我们对非欧几何晶体群的讨论既不完备也不一般。作为一个导引,Doburovin的书对这方面的事实有一个初步的总结。

关于Poincaré级数的进一步性质,尤其是,构成尖点形式空间的基,参见Gunning的书。

2维拓扑流形有微分结构的证明见Hirsch  Differential topology。

2维微分流形有局部复结构的证明见Hicks  Note on differential geometry。

 

第7章

基本域的示意图取自Serre的书。

Serre的书短小精悍,致力于讨论模群。由于是法国二年级本科生的教材,所用的工具相对初等。

Gunning的书对同余子群有一般性的讨论,定义了基本域的复结构并用Riemann-Roch定理计算相应函数空间的维数是对Serre最重要的补充。

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s